Efficient Brownian dynamics simulation of DNA molecules with hydrodynamic interactions in linear flows.
نویسندگان
چکیده
The coarse-grained molecular dynamics (MD) or Brownian dynamics (BD) simulation is a particle-based approach that has been applied to a wide range of biological problems that involve interactions with surrounding fluid molecules or the so-called hydrodynamic interactions (HIs). In this paper, an efficient algorithm is proposed to simulate the motion of a single DNA molecule in linear flows. The algorithm utilizes the integrating factor to cope with the effect of the linear flow of the surrounding fluid and applies the Metropolis method (MM) by Bou-Rabee, Donev, and Vanden-Eijnden [Multiscale Model. Simul. 12, 781 (2014)] to achieve more efficient BD simulation. Thus our method permits much larger time step size than previous methods while still maintaining the stability of the BD simulation, which is advantageous for long-time BD simulation. Our numerical results on λ-DNA agree very well with both experimental data and previous simulation results. Finally, when combined with fast algorithms such as the fast multipole method which has nearly optimal complexity in the total number of beads, the resulting method is parallelizable, scalable to large systems, and stable for large time step size, thus making the long-time large-scale BD simulation within practical reach. This will be useful for the study of membranes, long-chain molecules, and a large collection of molecules in the fluids.
منابع مشابه
Mesoscale simulations of polymer dynamics in microchannel flows
The non-equilibrium structural and dynamical properties of flexible polymers confined in a square microchannel and exposed to a Poiseuille flow are investigated by mesoscale simulations. The chain length and the flow strength are systematically varied. Two transport regimes are identified, corresponding to weak and strong confinement. For strong confinement, the transport properties are indepen...
متن کاملتحلیل رفتار DNA در گذر از ریز ساختارها بر اساس معادله فوکر-پلانک و مدل سد آنتروپی
We considered the motion of DNA molecules through a hexagonal array under uniform electric fields as a Fokker-Planck process which is affected by the entropic barriers and we have simulated this motion by computer. We solved the Fokker-Planck equation with numerical simulation of the Brownian dynamics by the Euler method. For different DNA molecules, under different physical conditions, the mea...
متن کاملSliding of Proteins Non-specifically Bound to DNA: Brownian Dynamics Studies with Coarse-Grained Protein and DNA Models
DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA mode...
متن کاملBrownian Dynamics Simulation of Dna in Complex Geometries
This dissertation is concerned with the dynamics of a long DNA molecule in complex geometries, driven by either electrostatic field or flow field. This is accomplished primarily through the use of Brownian dynamics simulation, which captures the essential physics at mesoscopic length scale, and allows us to simulate events happening on long time scale, such as DNA pore translocation and cyclic ...
متن کاملCoarse Grained Simulations of a Small Peptide: Effects of Finite Damping and Hydrodynamic Interactions
In the coarse grained Brownian Dynamics simulation method the many solvent molecules are replaced by random thermal kicks and an effective friction acting on the particles of interest. For Brownian Dynamics the friction has to be so strong that the particles’ velocities are damped much faster than the duration of an integration timestep. Here we show that this conceptual limit can be dropped wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 6 شماره
صفحات -
تاریخ انتشار 2015